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Abstract. Ammmmﬂhmmmwmudwdevdopammw“k:
for convergence of approximation schemes in parameter estimation and optimal control problems
nonlinear partisl differential equations. These ideas are used 10 establish theoretical convergence results

. for parameter identification using modal (eigenfunction) approximastion techniques. Results from numerical

j ’ investigations of these schemes for both hyperbolic and parsbolic systems are given.

1. Introdpction. When modeling real-world phenomena one often encounters a
situation where a priori knowledge leads one to conjecture a certain type of model
equation containing parameters which are unknown. In this paper we are primarily
concerned with techniques for recovery of these unknown quantities from given data.
In §§ 2 and 3 we present a quite general framework for approximation schemes for
abstract nonlinear Cauchy problems. These approximation results are subsequently
applied to modal techniques for identification and control problems in §§ 4 and §,

- respectively. A summary of some of our numerical experience with parametes estima-

T X tion problems using these techniques is given in § 6. The examples here were chosen

' 50 as to illustrate the feasibility and effectiveness of the method and to investigate

i possible inherent difficulties. We are quite confident that the ideas outlined here will

v be applicable in a variety of research areas where mathematical models for the

phenomena under study are used. In a forthcoming monograph we shall discuss in

; moredeuﬂndenuﬁuﬁonprohlemsthnmnmsevenlareasofnppﬁanom[”]

; including seismology [3}, 10}, [18), reservoir engineering [11), [17), [38), glaciology

f (16}, physics [37], biology [4], [5], [29], [34] and large space structures technology.

; ; While our treatment here is restricted to constant unknown parsmeters, the theoretical

' ideas extend in large part to problems with unknown function parameters. Indeed,

‘ we are currently applying some of our techniques to specific problems from the areas
mentioned above; in some cases these efforts involve identification of functions.

) In this paper the general approximation results are used to carefully discuss modal

| ; approximation schemes for certain classes of partial differential equations (see 384

' j and 5). Such schemes for specific identification and control problems are, of course,

i ’ not new. Many discussions in the literature, however, are in the context of very specific

: exampies and frequently no convergence proofs or evidence of numerical studies are

supplied. Modal approximations have many advantages, including: they are readily

discussed and understood in terms of classical spectral resuits; they are familiar to

* Received by the editors May 1, 1981, and in revised form January 11, 1982. This work was supported
in part by the Air Forve Ofies of Scientific Resssrch under contract R 76-. , in part by the
Natioosl Science Foundation under grant NSF-MCS 7905774-02, sad in part by the U.S. Army Research
Oftice under contract ARO-DAAG 29-79.C-0161.

" tLelschotz Conter for Dynamical Systemws, Division of Applisd Msthematics, Brown University,
Providencs, Rhode Toand 02912. Part of this research was cirried out whils this author was a visitor at
the Iuntituse for Computer Appliestions in Science and Eagiavering, NASA Laagley Research Ceater,
Hampton, VA, wiish s sperated wader NASA contracts NAS1-15810 and NAS1-16394,

$ Institet $is Mathomatik, Tochnische Usniversitit Graz, Xopernikuagases 24, A-8010 Graz, Awstria.
Part of this ressacch was casvied out whils this suthor was & visitor at the Lefschetr Center for Dynamical
Systenm, Division of Applied Mathematice, Browa University. mmmmsmmm
the Stolorm. Wissenschefts- und Porschatigsiandusfonds and the Patbright Commission.
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816 H. T. BANKS AND K. KUNISCH

and readily implemented by practicing engineers, and they give rise to a simple
algebraic structure for the approximating ordinary differential equations. However,
modal approximations do have some shortcomings, of which we mention several.
First, in many practical problems it is very difficult to calculate the true natural modes.
Secondly, for certain parabolic partial differential equations modal approximations
by their very nature lead to stiff systems of approximating ordinary differential
equations. Finaily, one can encounter lack of “numerical identifiability” (i.c., the
identification problems for the approximating ordinary differential equations yield
parameter estimates that converge to different values for different sets of initial
estimates) regardless of the well-posedness of the parameter estimation problem for
the original partial differential equation model. With respect to the first difficulty
pointed out here, we refer to Example 4.4, below, where we explain a “‘modal”
approximation scheme for an identification problem which does not employ the natural
modes of the system. For one solution of the latter problems, our experience indicates
that for certain classes of parabolic problems spline-based approximation schemes
can be more efficient. Details on this aspect of spline methods, along with a number
of other features of these techniques, will be given in a separate manuscript currently
in preparation.

The parameter identification and estimation problem has received a great amount
of attention in the engineering literature and we refer to [1), [23], [31), [32] for review
articles. In the future monograph alluded to above, we shall survey the research efforts
from the engineering as well as from the mathematical literature. Much of the
mathematical literature is concerned with the probiem of identifiability, which, loosely
speaking, is defined as the problem of injectivity of the map from the set of parameters
to the set of outputs. Although this is a very important theoretical and practical
question, it will not be a part of the discussion of the present paper.

We point out one important technical aspect that will become clearer in Examples
4.1 and 4.4 below. In general, the eigenfunctions of the model equation will depend
on the parameters that are to be identified. For modal approximation schemes this is
an extremely undesirable feature from the point of view of implementation, since in
practical examples the representation of the operators in the approximating equations
will involve a matrix of inner products of the eigenfunctions. It is, of course, desirable
to have this matrix independent of the unknown parameters t0 avoid excessive
numerical integrations when performing iterative searches on these parameters.

Our focus in this paper is on the development of semidiscrete approximation
schemes for parameter identification and control problems which result in approximat-
ing problems governed by ordinary differential equations. Of course, full discretization
methods (discretization in time as weil as spatial coordinates, resulting in problems
governed by difference equations) are of great importance and our investigations of
a related theoretical framework, as well as detailed schemes for such an approach,
will be reported shewhere.

In summary, the emphasis of our presentation is twofold. First, we present a
general theoretical framework, with unknown parameter-dependent spaces, which
can be used to treat many types of problems (including estimation of function space
parameters) aad spproximation schemes (3s¢ the remarks in § 7 below). As a concrete
exampie of the use of this framework, we give & detalled trestment of “modal”
spproximation schemes, thereby putting on a sound theoretical foundation a class of
methods that have besn used in an ad boc way by sclentists and enginesrs for some time.

‘The notation weed throughout the paper i quite standard. We employ the wual
notstion H' for Sobolev spaces with “functions” and “derivatives” in L, and || %0
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denotenormofelemenu.uwna;sthouofopenton.omyinumwhereconfmion
may arise will we use subscripts to distinguish norms in various spaces.

2. The sbetract identification problems and its approximation. We consider the

abstract semilinear Cauchy problem ,
2.1 ult)=AQu(t)+Fig. s x(t)). >0,
' #(0) = uo(q),

where for cach ¢ € Q = R*, A(q) is the infinitesimal generator of a linear C,- semigroup
{T(¢; @)} a0 On a real Hilbert space X(q) with inner product (-,-), and norm |-
(denoted sometimes below by X, (-, ) and |+|, respectively, when no loss of clarity
results from suppression of the ). We shall, throughout our discussions, employ the
concept of mild solutions, so that t > u(¢; q) is called a solution of (2.1) if it satisfies

@2) (e @)=T Quoa)+ L T -3;Q)F @ 5, u(s; q)) ds.

We note that for solutions u we have t - u(r; g) continuous. The conditions that we
impose on F below will guarantee existence and uniqueness of mild solutions u of
(2.1) on any given finite interval [0, T']. We shall in certain specific instances below,
be required to discuss briefly the relationship between mild and strong (in a classical
almost-everywhere sense) solutions of (2.1), but for more general results we refer the
resder to [28).

Throughout our presentation we shall assume that X (q) is a function space of
R"-valued “functions” (possibly one of the usual Lebesgue spaces of equivalence
classes of functions) defined on the fixed interval [0, 1}; consequently, we shall also
use the notation u(t, x; q) or u(t, - ; g) when discussing solutions of (2.1).

While we shall also discuss control-theoretic applications, much of our attention
will be directed towards the problem of identifying the parameter g in (2.1) from
observations of the system. Specifically, we assume that (2.1) models some physical,
biological, economic, etc., system for which output measurements § are available.
These measurements may be available in the form of continuous data (1), 0S5r= 7,
or discrete data #(1,), 051, <. - <(, ST. We then seek to find a “best” value for q
in Q by minimizing an sppropriately defined fit-to-data criterion. To be specific in
our formulstion here, we shall assume discrete time observations with values §(1,) in
an observation space 9. All of the results of this paper are easily extended to the case
dmﬂonpmbhmswbmonehumunmﬁmedln.bmwmnnmpmue

such problems here. Assuming, then, that a criterion function 7: @ xC(0, T'; X(q)) x
II;.; ¥+ R’ is defined, we formally state the identification problem:

(ID) Given observations § = {§(t,)}{.., minimize J(q, u(-;q), #) over q € Q subject
to u(-; g) setistying (2.2).

Several traditional choices of fit-to-data criteria are included in our formulation;
namely, we may conmsider cither integral or pbintwise (in a spatial sense) evaluation
least-squares sums in the sbove formulation. In the case of integral evaluation we are
given messurements §(4)€L2(0,1;R") where ySn and an ‘cutput map
Y6, x,4q):R"+R" on the “state” u(r, x; q). The obeervation space is given by ¥ =
L3(0, 1; R") and the criterion is defited by

. |
@) st n=E [ Pon-Yenoue ol d.

-




818 H. T. BANKS AND K. KUNISCH

We assume that Y is continuous in q and sufficiently regular in x so that x -
Yt x, qJult, x;q) is in L2(0, 1; R"). For the choice of pointwise or spatially discrete
measurements, we assume that we have observations 7(1,) e ¥ =[], R", correspond-
ing to measurements of the output at points {x,};..: in [0, 1] at time 7. These observations
represent measurements for C(t, q)é(tq) Where £(fq)=col (u(tox13q), "+ -,
u(t, x;; q)) and C(t,, q) is an (»]) % (nl)- matrix depending continuously on g for each
fixed 1. The associated fit-to-data criterion is then defined by

2.4) - T u(-;q) 9= 121 I#(8)~C(tw @)t 9.

The output maps Y and C introduced in (2.3) and (2.4) are necessitated by the
fact that often in practice one can observe only some components (say ») of the
n-dimensional vectors u(t, x; ¢), and that these observations may depend on the time
at which they are made. We further note that the point evaluations at x; used in
defining £(t, q) above may be meaningless without additional restrictions on the state
space, the initial data and/or the right side of the equation in (2.1). A more detailed
discussion of the problems arising from use of criteria such as (2.4) when dealing with
mild solutions will be given in the context of 4.3 below.

We tumn next to formulating a sequence (ID") of approximating problems on
Hilbert spaces X" (q) for our original identification problem (ID). These problems
involve “states” governed by ordinary differential equations and are (in the specific
instances we shall propose) tractable using standard numerical procedures. We state
first a series of hypotheses and definitions that will be needed at various points in the
sequel.

(H1) For each N=1,2,---,X"(q) is a closed linear subspace of X(q), endowed
with the X (¢) topology.

(H2) The spaces X(q), g€ Q<R", are set-theoretically equal and uniformly
topologically 30 that there exists a constant %' 2 1 such that |v; S
Hvl, foralive X =X(q)and ¢, § € Q.

(H3) For each g € Q, A(q) generates a linear Co-semigroup T'(t; q) on X(q).

(H4) The set Q is a compact subset of R*.

(HS) () For each g€ Q, let PV(q): X(q)» X" (q) denote the canonical orthogonal
projections along X' (¢)* andlet A (g): X (q) > X" (q) be defined by A" (q) =
P"(q)A(q)P" (q). For each N, let A™ (q) generate a linear C,-semigroup on
X (q) denoted by TV (¢; q).

(i) For each N, there exist constants & = .4(N) and & = &(N), independent
of g, such that [TV (r; q)| s .M e®.

(H6) (i) For each continuous function u:[{0, T]+» X =X(q) (see (H2)), the map
t -+ F(q, t, u(t)) is measurable.

(ii) For each constant M >0, there exists a function k; =k (M) in L3(0, T)
such that for any g, € Q we have

|F(g, t, us)~F(q, 8, u2)lg S ks(8)|ur ~ ualy

for ol #y, 426 X with |y EM.
(i) There exists a function &; ia L0, T') such that

\F(q, 1, v)lg B ko Mivly + 1}

forallveX,q.4¢Q.
(iv) For each (1, v)&[6, T)x X, the map q+F(q, 4, v) is continuous. (Again,
under (H2) recall that all the sets X = X(q) are the same.)

aoar Lok n

NG s -
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(H7) The projections P~ (q): X (q)~» X" (q) are such that for any sequence {g"} in
Q satistying 4" +J € Q, one has }P" (¢")z —z| x>0 as N » o for all z € X (@)

(H8) For each convergent sequence g +§ in Q, there are constants 4, e such
that [TV (¢; g™ )| v SMe™, |T(2; J)e,,. S#e™ uniformlyinN=1,2,- - -,

(H9) For each convergentsequence g’ -»§ in Q, one has for z € X(§), |T" (t; ¢")z -
T(t; Pz|n+0 as N -+ o, uniformly in t € [0, T'].

The assumption (H2) will be taken as a standing hypothesis for the remainder of
our discussions. For the approximating schemes we develop below, consistency will
follow from (H7) while (H8) is a statement of stability. As we shall see, convergence
of the schemes (which is (H9)) will follow from (H7), (H8) and the Trotter-Kato
theorem.

Remark 2.1. It suffices, under the standing assumption (H2), that the following
condition hold in place of (H6)(ii): For some fixed g*€Q we have that for each
M >0 there is a function k, such that for all g Q the relation |F(q, ¢, u1)~
F(qs 8, U2)|q» S ko(0)l85 — talge for all us, uz e X with ju;lee = M. Indeed, it is easily seen
that this condition, along with (H2), implies (H6)(ii). Similarly, we can in the presence
of (H2) equivalently postulate in place of (H6)(iii) the conditions: For some fixed
q* € Q there exists a function k such that |F(g, 4, 0)|e* S kx(t)fjvls+ + 1} for all v e X,
g € Q. We further note that existence of a function k3 € L(0, T) such that |F(qg, 1, 0)|; S
k3(t) for ¢, Q, a statement of the inequality of (H6)(ii) holding only for |v]s
sufficiently large (i.e., affine growth at ©), along with (H6)(ii), are sufficient to imply
(H6)ii).

While the complete role played by the various hypotheses in our development
will be clearer after our presentation, a few explanatory comments here might be
heiptul te readers. First, the desirability of the generality of allowing the underlying
Hilbert space X for (2.1) to depend on g in such a way that (H2) obtains will not be
apparent from the examples discussed here. (Rather, one must for this consider certain
parabolic problems—see the comments ifi § 7.) However, in light of (H2) as a standing
mmmhn.wul;‘)llﬁﬂedmwmemonimlhomrphkml":xma
X(q") in wridi (&")z—zLu»OinW)ntherthmtheteehniuﬂyeommte-

W'z -$" 2| n +0. Similar observations are pertinent for the statement
of (H9) as well as in numerous other places in our presentation where we suppress
the S" notation.

Condition (H4), while seemingly stringent, is an assumption often valid in practical
problems where our theory might be useful. Since under (H3) A(q) is closed, it follows
from the closed graph theorem that A~ (g) of (HS5)(i) is, in fact, bounded and hence
(HS)() follows immediately from (H3). It should be recognized that the form of the
approximating operators defined in (HS5) is a classical one (e.g., see [33, p. 369]) which
has also recently been empldyed in the development of spline approximation tech-
niques for delay differential equations [6). The d=finition of A" (g) involves the implicit
sssumption that X (q) = Dom (A (¢)); since our goal here is the rigorous formulation
of modal approximation schemes for (ID), this restriction poses no difficulties.
However, it does prevent a straightforward inclusion of low-order finite-clement
methods for higher-order partial differential equations in our approximation
framework.

Hypothesis (H7) is a common requirement (e.g., soe [24), [30)) in approximation
theory, demanding that the sequeiice X ™ of subspaces sctually approximate the original
state space X. Finally, (H6) is comprised of conditions on the nonlinearities in (2.1)
that are sufficiemtly general to include many interesting problems of practical impor-
tance but yet are strong enough to guarantee global existence of solutions of (2.1) on

+ G-

L

O BT oty 3 o e 5




820 H. T. BANKS AND K. KUNISCH

fixed finite intervals. As the knowledgeable reader might expect, these conditions can
be replaced by alternate and/or weaker, hypotheses, but only, in general, at the cost
of additional tedium in the proofs below. We have tried to compromise between
strong conditions that are easily stated and employed in the proofs and ones that are
as general (and weak) as possible. Further comments on this matter will be made in § 3.

Before defining the approximating equations for (2.1), we define the projection
of the nonlinearity F onto X~ by F"(q,4, v)m PV (q)F(q,t,v) for each (q,t,v)€
@ x[0, T]x X. The approximating family of equations is then given by

i s)=AN(@w()+F" @ v(@), >0, ,
x 2.5) . i
: v(0) =P (q)uo(q).

Assuming existence of (mild) solutions to (2.5) (this will be established below), we ;

denote (for a given q) these solutions by u” (1) or alternatively u™ (¢; q) or u™ (¢, x; q), /

depending on the context. We then define the approximate identification problems :

(ID™) by:

(ID”) Given observations §={#(s)}i-) and a fit-to-data criterion J, minimize
IN(q)mJ(q,u™(-;q), §) over q € Q subject to u™(-; q) satisfying (2.5).

t
f We note that if (in addition to (H1))X" (g) is finite-dimensional, then (2.5) can be
i

equivalently interpreted in the strong sense and (ID™) then becomes an optimization
problem constrained by finite-dimensional ordinary differential equations,

In our discussions below, we shall denote by 4" any solution of (ID") so that it
follows by definition that J¥ (dV)sJ" (q) forallge Q.

PROPOSITION 2.1. Assume that (H2), (H3) and (H6) obtain. Then for each g€ Q

there exists a unique (mild) solution u(-;q)e C(0, T; X(q)) of (2.1). If, in addition, ‘
(HS) holds, there exists, for each N=1,2,- -+, a unique (mild) solution u™(-;q)e
C@©, T; X(q)) of (2.5).

Proof. The proofs are completely standard and we only sketch the ideas for (2.1).
follows immediately from (H6) and an application of Gronwall's

inequality. Existence is established through the usual Picard iterate techniques. Define
0°(e) = T(¢; Q)uolq) and for f=1,2,- - -,

2.6) o'(f)= r(r;q)uo(q)+L T(t—33 QP 5 0''(s)) ds

for ¢ €[0, T). From (H3) and (H6) it is easily seen that the iterates v’ are all well '
defaed and v': [0, T)- X (q) is continuous. Moreover, {v'}{=0 is a bounded subset of ‘
C(, T; X). Employing (H6)(i) and simple inductive arguments, one can establish
that {0’} is Cauchy in C(0, T; X). Passing to the limit in (2.6), one obtains the desired
results. Bxistence of unique solutions of (2.5) is argued in an anslogous manner by :
appealing to (HS) for sppropriate boundedness. - ?
TisonnM 2.1. Assume Aypotheses (H1)-(HG6) hold and let J(-,:,§): QX :
C(0, T;X)+R" be continuous. Moreover, suppose q - uolq), 4P (q)z and q~
T™(¢; g)z, 2 € X, are continuous, with the latier uniformly in ¢ [0, T). Then: (i) There
axists for each N a sohution 8~ of (ID™) and the sequence 8™} possesses a convergent
W(’w . () If we further assume thas, for any sequence {g’} in Q with
¢-q" :;ah;- ' (e; @) - u(t; %o 2 0 a8 /» 0 uniformly in t€[0, T, then Qs a




e g« o
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Proof. We show for fixed N that g -»J~ (q)=J(q, u™(-; q), §) is continuous on Q
which, in the light of (H4), yields (i). First note that u" satisfies

2.7 u"'(t;q)=T‘"(t;tl)l”"(q)uo(q)+jo TV(t-s;q)P" (Q)F(q,s,u"(s;q)) ds

on[O,T].Inviewof(HS)and(HZ)weﬁndthatthereexistoomtantsM and M, such
that [TV (¢; @)ly S M, |P” (¢)ly =M, uniformly for t€[0, T}, g, § € Q. It follows from
(H6)(iii) and (2.7) that

W q)l.SMlP"(q)uo(q)lq+ML \P¥ (@)F(g, 5, 1™ (53 @) ds

5M|uo(q)|+M_L ka(s )™ (53 q)lq + 1} ds.

Since q -» 4o(q) is continuous, this implies (via Gronwall’s inequality) that |u" (¢; ¢)|,
is uniformly bounded for (¢, q) € [0, T]X Q. This in turn implies (by (H6)(iii)) that the
mapping s » TN (¢—s; q)P"(q)F(q, s, u™(s; §)) from [0, T] to X is dominated by an
integrable function uniformly in g, §, § € Q. (This will permit us to mvoke, below,
the usual dominated convergence theorem.) Assuming that ¢’ +4, ¢', € Q are
arbitrary, we obtain the following estimates:
™ (e; §)-u™(t; ¢")
s|T (&; HP" (Puold) - TV ¢; ¢')P" (§uo(d)|
+HT™ (6 WP (@uold) - T (t; 4)P" (¢'Juolq)|
HT™(e; )P (@ )uo(@) - TV (¢; ¢ )PV (¢")uolq)]

+L HT™ (=53 D) =T (- 3; WP @F @, s, u™ (53 )| ds

+L'|T"(r-s;4')(P" @-P @@ s u™ (5 )| ds 2
7
LIT"(c—s PN NF G545 D) -Figh s, 30 ds }

=p1(j) +p2(/) +p3()) + p4(§) +ps() + pe(f),

where the p,'s are defined as indicated (p, the ith term), i=1,- - -, 6, and all non
are |- |;. We then have by hypothesis

p1(N=HTV @ H-T" t; ¢ NP" (Puod)| >0 =sj-»co,

uniformly in ¢ € [0, T]. Also p; and p;0 by the continuity assumptions on P" and
uo and the boundedness of T%(¢; q’). Dominated convergence implies that p,-»0
and ps -0 as / -» 00, Finally,

o/ MM Lm:. W™ (s ) ~Fid, 5 ™ (s; )| ds

+[ 1P w0 0 Fi@' 8 4 )

smmu)+fh(s)iu"(:;4)-u"(nq')lda.
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where p()-> 0 as - ¢ and k; depends on the uniform bounds for «™ (¢; §), u™(t; ')
(see (H6)(ii)). Thus we find -

lu"(t;«i)-u"'u;q‘)lse,(mL k(™ (53 §) —u® (53 4" ds,

where ¢;(t)» 0, uniformly in r {0, T}uj-uco Applying Gronwall’s inequality, we
hmmifom(mt)eontmuityotq-b (t; q) on Q@ which implies the desired continuity
of JV.

Turning to (i) and lemgs{d"’} be a convergent subsequence with 4" -+ §, we
ﬁrstobmvethat!”"(d"')sl 1(q) for all ¢ € Q. By hypothesis, u™(t; §")» u(t; §) and
turthermore & (1; q) > u(t; q) for each g € Q, with convergence in both cases uniform
in ¢ on [0, T]. This implies J™(§™)->J(d, u(-;4), §) and J™(q)+J (g, u(-;4), §) as
j+o and hence from the above inequality we obtain, by passing to the limit,
J(«},u( ,d),ﬁ)st(q,u( ;q), §)forall g € Q. Thus 4 is a solution of (ID) and Theorem
2.1 is established.

Remark: 2.2, It v-+J{q, v, §) 2 a mapping on C(0, T; X) actually depends only
on a finite number of values. v(1), 4 €[0, T}, as, for example, in (2.3) or (2.4), then
the hypotheses of Theorem 2.1 involving uniformity in ¢ can be relaxed to statements
holding only for each fixed 7 €[0, T). The above arguments remain unchanged except

it 0“ hat the uniform (in ¢) convergence remarks are replaced with pointwise convergence
~ Atements (see especially the term p1 (/) in the proof).
* oot "\ We conclude this section with a brief explanation of how (2.5) (or (2.7)) is to be

Mg\in actual computations. We adopt notation very similar to that found in [6] in
fvelopment of spline methods for delay systems. We assume that X" is finite-
andchoonab&independentotq(mllthat(l&)nastandmg

BY =@y, Bav)

'dmx"(q) From (2.7) under (HS) we see that the solution & of (2.5)
 u »q)ex toralundhemtlnne:huarepreuuuﬁonu"(r q)=
) with w¥(5;q)=col (W) (t;9), -+ +, Wiy (8 ) € R*™. We let [A"(Q)]
and[F (g, 0w )]mmmmmwmnhmmé"of
-&;qm bl;”@)!'(q,:.u"). respéctively. The coordinate representation of (2.5) is

S W"(t.q)-[A"(q)]w"(t;q)+[F"(4-l.W"(';Q))]. >0,
™ ”M W)=y, |

k) .m is defined ttmug Q)= For X" the
amdu:lmma eR inr"(f;'z" g,‘”)' oren zenﬂ;uely
:yw : oolition (P”(q)r ~2)LX", or w* 8" = 8", 2),

@9) a” =(@")"'R":

where Q" Is the FXNYXd(N) matrix with elsaents (87, 8'), end (R™:z ).-«..:).
hf-l.!.-n.dm mmah[ﬂmmln

(2.10) e A= @K,
where XN iudmxmmmmn = (@8l AQ)B])e and
ek wile (GNP G ™),

v et . asge. s
e,
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We thus arrive at the final form of the approximating system for (2.1) in X~ (¢) as
QNN () =K wN )+ R F(q, 4, YWV (t)), >0,
w" (0)=(Q")'RNuolq).

3. Approximation theorems for abstract systems. In this section we shall focus
our attention on the condition “q' »§ implies «'(¢; ')+ u(¢; §)” of Theorem 2.1(ii)
and present results on the convergence of solutions of the approximating systems (2.7)
to solutions of (2.1). We state and prove two theorems; the first is applicable to
nonlinear parameter identification problems (§ 4) while the second will be used in
connection with linear boundary control problems in § 5.

THEOREM 3.1. Suppose hy, "mhe.m (H1)-(H3) and (HS)—(H9) hold and let q~, §
be arbitrary in Q such that q" > q. Further, suppose that Juolq™ )~ uo@)| n 0 as
N 0. Then the mild solutions u® (t;q") of

i) =A@ W O+F Q" L u" 0),
u® (0)y=P" (¢" Yuolq™)
converge to the mild solution u(t; §) of (2.1) for each re[o, T) If (t,v)>F(G,tv)
is continuous on [0, T1x X, then the convergence lu™ (t; ™) —u(t; @)l -» 0 is uniform
inton [0, T].

Proof. Let q" +3 be arbitrary as uypothesized. Recalling the proof of
Theorem 2.1, we observe that one easily argues existence of a constant X such that

[ (t; gVl SK, lu(t; P~ SK for all N and ¢ €0, T]. Further, we see that for
t € [0, T] we have (where all norms are |+ |,~)

™ (t; a™)—u(t; 9))
STV 4P (¢ uolg™) - TV (1 4" )P (d™)uo@)|
+|TV(t; 4V )P (@™ )uo@) - TV (5 4" 0@
+TY (65 4™ Yuol@) — T6; Duo@)|

+L [TV -s;¢")PY @ HF @Y, s, u™(s:qV)-F(@q", s, u(s; Q) ds

(2.12)

3.1

+L 1T (6= 534" WP" @ WF (@™, 5, u(s; )~ F (@ s, uls; W ds
+L IT™ (e =53 8" WP" @)~ DIF (@ 3, u(s; 3))) ds

+ [ HT™(0-0: 4"~ T~ 0, P Q5,000 D) o
= gy(N)+e2(N)+e3(N)
+ L [T —5;q" P @ WF (@™, 5, u™(s; ") -F @™, 5, u(s; D) ds

+84(N)+83(N)+eeN)

By (H8), our hypotheses and the definitien of P"(¢") in (HS), we find le:(W)|=
2" luolg™) = ud@) >0 a8 N+, Ao, [Nl 5.4 e*TI(P" (q™) = Duol@)l+0 by
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(H8) and (H7). That |e3(N)| >0 uniformly in ¢ on [0, T] follows directly from (H9).
Moreover,

lesW)| =M e _LTIF(q", s uls; P)-F@G, s uls; P ds»0
by (H6)(iv), (H6)(iii) and dominated convergence, while
les(N)| =M e" LTHPN(Q") -IVF(. s, u(s;§))ds >0
by (H7), (H6)(iii) and dominated convergence. Finally,
les(N)| = L' KT™(~s:q™) - T@—s: DF @, s, u(s; @) ds >0

by (H9) and dominated convergence ((H8) with (H6)(iii)) for each fixed t [0, T].
We note that the convergence in all of the terms above, except e, is uniform in
t on [0, T]. If, in addition, the continuity hypothesis of the theorem obtains, we find
that {F(§, s, u(s; §))|s €[0, T]} is a compact subset of X and the convergence in the
integrand of &¢ is uniform in ¢ and s; hence in this case £¢-» 0 uniformly in ¢ also.
We have thus established the following estimate:

™ (e; q™)~u(t; @)

s f:l e+ Me™ L IF@™, s, u™(s;qV)-F(@", s, uls; )l ds
j=

seN(@)+ M e"’L ki)™ (s;q™)—uls; ) ds

where eV >0 as N>, An application of Gronwall’s inequality then yields that
[N (@t; qV)~u(t;§)}+0 as N » o0, where the convergence is uniform in ¢ under the
added continuity hypothesis of the theorem.

COROLLARY 3.1. Under the hypotheses of Theorem 3.1, u™ (t; ) » u(t; q) for each
fixed q € Q, uniformly in t on [0, T} if, in addition, (1, v)->F(q, 1, v) is continuous on
o, TIxX.

We turn next to convergence results needed for optimal control problems.
Consider for fixed g € Q the system

ut)=A@u(t)+Ga 1),

3.2
.2) 4(0) = uo,
and the approximating system
uNOy= AN (@uN (1) +PY(@)G(g, ),
(3.3) "
u™(0) =P (q)uo,

where G has the form G(g, ¢) = y(q)o(¢). We assume y(q) eI’ where I is a subset of
F=@n . 7.)9:02X cX) with £ a given subset of X. We further assume
o €Z, 2 agiven subset of L,(0, T'; R*).

TuOREM 3.2, Assume (H1)-(H3), (HS), (H7)~(H9). Suppose moreover that X
is compact and X is bounded. Then for each fixed q € Q, mild solutions u™ of (3.3)
converge 1o the mild solutions of (3.2), uniformly in o &3, yaT and t&[0, T).
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Proof. We consider the estimates in the proof of Theorem 3.1 with F(q, s, v) =
G(q,s) and ¢~ =G = q fixed. Then

™ ¢; q) - u(t; @)l S €2(N) +e3(N)+25(N) +26(N)

(e1=¢e4=0), where g, and ¢, are as before and

es= [ IT(t-s:aHP" @~D11G(g, )l ds,

eo= L HT™ (e =53q) - T(~5: )G g, )l ds,

and, as usual, all X norms are |-|,. We have immediately (using (H7), (H8), (H9))
that £, and €3+ 0 as N - o0, uniformly in o, ¥ and t€[0, T). Also,

T
les(N)| S M e*T j (™ @)-Dy(@)o(s)| ds

T
<A "™ max [(P¥(@)-Dyi(q)| L lor(s)| ds.
1%isu

But since X is compact and £ is bounded, this latter term -0 as N - uniformly in
vel,0eZ and t€[0, T]. Finally,

lestN)| = jmax L‘I{T"(t—s;q)-T(t—S;q)}v‘(q)llo(:)lds

1/2
s max | [ P05 00-TG-si 0@ ds] lolusom,

l‘l"

and this last estimate yields es(N)~0 uniformly in yeT', o € X and 1 €[0, T}, again
from the compactness of X, (H9), and the boundedness of £.

As we have previously noted, the main purpose of (H6) is to allow us to
guarantee existence of solutions of (2.1) and (2.5) on fixed finite intervals [0, 7]
(see Proposition 2.1). The condition (H6)(iii) is used in the proofs of Theorem 2.1

and 3.1 only to establish uniform bounds on the u”. This permits us to employ the
local Lipschitz condition (H6)(ii) and to appeal to the dominated convergence theorem
in certain arguments. We have already noted that (H6)(jii) can be relaxed to “affine
growth at 0" (see Remark 2.1). With an alternative approach, one can relax this
growth condition even further and still obtain the conciusions of Theorems 2.1 and
3.1 (with the other hypothcees remaining un ). Speclﬁellly, for N sufficiently
large, the initial data and defining operators T, P and T for u”™ and u, respectively,
are close. Thus if one assumes (in place of (H6)jii))

(A6) (i) For each q € Q, there exists a solution u(¢; ¢) of (2.1) on [0, T}, and
(i) There exists ks€L1(0, T) such that |[F(q, 4, 0)ly Ska(r), for ¢, € Q and
tef0, T,

it is rather tedious but not difficult to show that for N sufficiently large, all «”™ defined
by (2.7) exist on [0, T'] and lie in some bounded neighborhood of u, the solution of
(2.1). (The arguments involve use of classical fixed point ideas to obtain solutions
on some interval [0,8,] and then continuation to ([8,,28,],-:-,etc.) The

. . " TPV PN
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condition (A6)(ii) can then be combined with (H6)(ii) to obtain domination of
terms such as F(q,s,u"(s;q)). Thus all of the arguments behind Theorems 2.1
and 3.1 remain valid, the hypotheses being changed only in that (A6)(i), (A6)(ii)
replace (H6)(iii), and the conclusions changed only in that they can be obtained only
for N sufficiently large (which of course is not important theoretically in approximation
results such as those discussed in this paper).

Regarding the assumption (A6)(i), we note that there are various conditions one
might impose on F to insure existence. For example, monotonicity hypotheses might
be assumed so that —(A +F) is maximal monotone and one could then appeal to
standard existence results [9], [19]. In § 6 we present numerical results for our
approximation scheme for an example (Example 6.5) in which (H6)(iii) is not satisfied,
yet (A6)(i) and (A6)(ii) do hold. However, we shall not pursue any of the theoretical
ideas here, since this is really not the focus of our presentation.

4. Examples: Parameter identification in hyperbolic and parabelic equations.
We turn now to an application of the results developed in the preceding sections to
identification problems for specific equations. A fundamental requirement in both
Theorems 3.1 and 3.2 is that the conditions of (H7), (H8) and (H9) be verified. As
we have indicated earlier, the convergence statement of (H9) can be obtained rather
easily for our schemes from (H7), (H8) and some standard approximation resuits from
linear semigroup theory. We state here, for our future reference, one version (due to
Kurtz [24)]) of these approximation theorems.

PROPOSITION 4.1. Let (B, }-]) and (B",|-|v), N=1,2,- -, be Banach spaces
and let " : R -+ B" be bounded linear operators. Assume further that I (t) and T~ (1)
are linear Co-semigroups on B and R™ with infinitesimal generators s and oA,
respectively. If

() liminew 7"zl =|z| forall z e @, ]
(ii) there exist constants M, & independent of N such that |T™ (1)| s Me™, 1 20,

(iii) there exists a set D < B such that @ < Dom (f), D =B, and Ao~ A)D =R
fﬂ? some Ao >0,

(iv) for z € D we have limy ..o |8"w"z — #Vstz|y =0,
then tim [T (O)w™z -2 VT (t)z|n =0 for z €M, uniformly in t on compact subsets of
{0, eo).

We note that the requirement in (iii) implies that @ is a core [21, p. 166] of ;
this is easily seen using the fact that of, being an infinitesimal generator, is closed and
(Al —af)"" is bounded for A suficiently large. The proposition then follows directly
from Theorem 2.1 of [24] taken with subsequent remarks [24, p. 361] of that reference.
Obviously, (ili) in our statement above could be replaced by the hypothesis that @
be a core of &f. Further, we remark that the requirement & = @ is superfiuous in (ii)
if one verifies that (Ao - = @ for Ao € p (). In this case one can easily demonstrate
directly that @ is a core for the generator of.

In the examples we discuss below, we shall use the notation A, F, A, PV, FN
to denote the specific operators in each example, since this will facilitate reference
back to the basic theorems of §§ 2 and 3 and should cause no confusion for readers.
However, we shall adopt distinct notation for the various state spaces X, X within
the context of each example.

Example 4.1, Hyperbolic equations. We consider the one-dimensional hyperbolic
oquation

4.1) On ™ 102 +qa0; +qs0 +f(qes 1, X, v, 1)

PR
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with initial and boundary conditions

0(0,x)= £ qiatx),
(ICy) "

0,0, x)= Zl qswi(x) for0sxs1,

=

(BCy) v(t,0)=0(,1)=0 forr>0,

where v =v(t, x), g¢€ R™ and the remaining g, g} are scalars. The vector parameter
q of § 2 thus has dimension k =3m + 3. (If the output maps such as Y or C in the
fit-to-data functions (2.3) and (2.4) depend explicitly on some parameters g3, * - * ,q7,
we assume with no loss of generality that these have been embedded in the g (or g4
or gs) vector.)

We remark that we do not formulate nontrivial boundary conditions, possibly
depending on parameters, in (4.1)(IC,)~(BC,); however, it is casily seen that by
simple transformations such generalities actually can be included in our formulation
above. Consider, for example,

4.2) ‘ Va ™ q10xx
with initial and boundary conditions '
v(0, x) = g4 (x),
I . :
( Cz) . 03(0, x) "45¢(x)v
(BC,) v(t, 0)=q:b1(t),  v{1, 1)=qsby(t),

where 4, b, are twice continuously differentiable functions. Employing the standard
transformation w(t, x) = v (s, x)~ (1 —x)q2b,(t) —xqeba(t), we find that (4.2)(IC,)-
(BC,) can be reformulated as a special case of (4.1)-(IC,)-~(BC,).

Returning to (4.1), we proceed in the usual manner to rewrite the equation with
boundary and initial conditions as an abstract evolution equation. Let A denote the
Laplacian operator 3°/ax> in H® = L(0, 1; R); here and below the Sobolev spaces H'
consist of R*-valued functions on [0, 1] taken with their usual inner products unless
otherwise specified. It is well known that A with Dom (A) = H; N H? is a self-adjoint
operator in H° satistyiag (~Az, z)Z|z|* for all z € Dom (A). We impose the following
additional assumption on the coefficient q; in (4.1):

(HQ) 'lBereexistpositivenmbenq{' and g} such thatg e Q < R* implies g} Sq: S
q1.

For a given g € Q = R*™*? we of course mean by g, the first coordinate of the vector
q'(qn" ',Qo)Whefeq;'(q},' . '.47')»1'"4-5.5.

Having thus assumed hypothesis (HQ) for a given fixed parameter restraint set
Q, we endow the set H; with a family of inner products

b}
dw 32
{w, 2)¢ -L [ 41 3;' ;';.('lwm Zy)

where q ranges over Q. In view of (HQ), the space (s, (¢, *)y,) is, for each g€ Q, 2
Hilbert space which we denote by V(q,). The space X(q) of §2 is chosen for this
example to be X(g)= X(q)= V(q;) x H® with the usual product topology generated
by (w3, w2), (21, 22))q = (W1, Z1)y, + (W2, 22). Condition (H2) is obviously satisfied since

!




828 H. T. BANKS AND K. KUNISCH

for any §,q € Q we find |z|; = X|z|, for all z ¢ ¥ where ¥ =(q{/q1)"/>. Introducing
the variable w(¢) = v, we may rewrite (4.1)-(IC,)(BC,) in ¥ by

d (o)) _ v(?)
ar (w(t)) ‘A(")(w(,)) +F(g,,00@),w), >0,

v(0)\ _ Y qidi
(W(O)) - (Z qéqh)'
where (¢, ¢;) € ¥, Dom (A(q)) = Ho NH*x H,

0 - 1
A(q)-(qu‘*qs qz)’

4.3)

and

0
F(q‘ . ”(t). W(t» (f(q& AN v(" * )l W(t. ‘ ))).
Before turning to a careful discussion of (4.3), we define the operators, etc., needed
in formulating the modal approximation scheme associated with (4.1).

Since the operator —A is self-adjoint with compact resolvent, standard results in
spectral theory and the theory of bilinear forms (see [15, p. 1331), [39, p. 343],
(33, pp. 247-254]) are applicable. Defining &,(x)=(v2/j#)sinjwx and ®,(x)=
V2 sin jwx, we find that {$}; and {®;}7, constitute complete orthonormal sets
(CONS) for V(1)(=H}) and H®, respectively. The corresponding modal subspaces
X" (q)=2"(q) of X(q) are then defined by " (q) =span {81, - - - , 811} where

Bf’-(t’), j=1,-+,N, p;’-(’z"). jaN+1,---,2N.

Itis easily seen that U %-{{8.'}721} forms 2 CONS for X(q*) where g* = (1,0, - - -, 0),
and a complete orthogonal, but not normal, set for #(q), for g =(q,,* * * , g¢) With
41>0, q1 % 1. We note also that ®, &, are eigenfunctions of A corresponding to the
cigenvalues A = —j2%, j=1,2,- -,

The subspaces X" () and the corresponding orthogonal projections P" (q) (see
(HS)) having been thus defined, the modal approximation operators A () for A(q)
are determined as in (HS). The corresponding matrices Q~ and KV of (2.10), which
in this case are 2N x 2N-matrices, are readily seen to be given by

4.4) Q" =disg(gs, 1 qul, 00, 1),
where the g, and 1 each appear N times, and

N0 DY
“5) X =(pw pa)

where the D', /=1,2,3, are NxXN diagonal matrices defined by DY’ = diag (wg;,
2mq;, - -, N#qy), DY = diag (qs/w,qs/2%, - + - ,q3/Nw) - DY, and DY = g,l. Recall-
ing (2.9), we observe that in this case the projection operators PV (q) are actually
independent of q.

We are oow in a position to verify thet (HS) and (H9) obtain for the hyperbolic
cxamples under censideration,

Tnonem 4.1. Assume that (HQ) Aolds and let (g™} be an arbitrary sequence in
QcR™* converging 10 € Q. Then the operaters A(J) and AV (@) of (4.3) and
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the associased modal approximations described above generate Co-semigroups T(t; §)
and TV (t; q™) on 2(J) and | T (t;4")z ~ T(t; )zl +0 for z € X(Q), uniformly in
t on compact subsets of [0, ). If we further assume (H4) (Q is compact), then there
exists w € R, independent of q € Q and N, such that |T(¢; @)l Se* and [TV (t; q)|Se™
forallqeQ,t&0,N=1,2,- .-,

Proof. For any q € Q, a straightforward calculation shows that

M"(q)s(iq?A :))

u with Dom (Ay(q))=H3 NKH*xH} is a symmetric operator in #(q). Furthermore,

Dom (A(q)) is dense and A, is invertible. It follows [28, p. 97) that A, is skew adjoint

} and hence by Stone’s theorem {26, p. 252), [41, p. 345] generates a unitary group on

‘ %(q). Defining the operator A(q) on #(q) by A(q)(z1, 22) = (0, 4321 +q222), it is easily

scen that A(q) is bounded. Indeed, using the fact that the H'¢ norm is stronger than

the H° norm, one finds [A(q)(z1, z2)l; S ¢ (41, 42, 43)l(21, 22)|o Where the constant ¢ is
bounded above uniformly on Q if (HQ) and (H4) hold, say ¢(q;, 42, ¢3) S w.

_ We thus find that A(q)=Ao(q)+A(q) is the perturbation of A, by a bounded
operator and hence [21, p. 495),[30, p. 80] generates a Co-semigroup T'(t; g) on ¥(q)
% satiafying |
(4.6) [T(; q)l S exp {c(q1, g2, aa)1},

' where there exist » >0 independent of g such that c(g;, g2, §s) Sw in case (HQ) and
) (H4) obtain (or in case (HQ) holds and q lies in a bounded subset of Q).

As we have pointed out eartier (see the remarks in § 2), A¥(q) is a bounded
linear operator lor each N and hence generates a Cy-semigroup on #'(q). Assuming
that (HQ) holds and q lies in a bounded subset of Q, we have that A(q) is the
infinitesimal generator of a Cy-semigroup satisfying |T'(1; )| S e so0 that A(q)~wl
is the generator of a contraction semigroup and is hence dissipative [22, p. 90), [30,
pp. 14-17). That is,

(A@)z,2)Sw(z, 2)

for all z e Dom (A(q)). From the definition of A" itfollows thatfor z € ¥(q)
%) (AM(9)z, 2), = (A(QP"z, P2}, Sw|P"z |2 S w2 ]2,

since P (q) i the orthogonal projection of ¥(q) onto ¥™ (¢). Hence we find [TV (¢; q)| S
e, a8 desired in the second conclusion of the theorem.

We make use of Proposition 4.1 to establish the con results of the
thearem. We take for our discussions & = X(J) and " = X(g"'), which of course
uuymmmam).mmwumimmgymt(ma
Proposition 4.1 holds for our family of semigroups T (¢; ¢™). Letting =" =SV be the
canonical isomorphism from #(3) to X(q"), we see immediately from the hypothesis
q" - § and the definition of the norms in #(q) that jwVz |~ -+ |z, 30 that (i) is satisfied.

We define @ = U N.; #7(3) and have at ence that < Dom (A(J)) and $ =
#(J). From the definition of A(J), the fact that AJ-A(J) is invertible for A
sufficiently large and that the ®, & are cigenfunctions of A, it is easily argued that
A -A@)2 =D sothat (A —thm-x(q);mcg(m)huw. J

— : } . SRR IR
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Finally, suppressing the notation " = $" for the canonical isomorphism (see our
commentsin § 2), we have for each z € D and N = N (z) sufficiently large (then Pz = z)

|AN @)z - A@)z] = |PYA@V PNz - A@)z|
s|PYA(@Y)z - PYA@)z|+IPNA @)z - A @)z
slA@")z-A@)z|+|(PY -DA@)z]

where all norms are |- |,~. Since ¢~ +7 by hypothesis, the form of A(q) yields that
the first term -+ 0 as N - 0. From the completeness of the {8)'} in ¥(q*) (see our
remarks above), the equivalence of norms and thus the strong convergence P~ » I in
any of the norms, we obtain that the second term -+ 0. This completes the proof of
Theorem 4.1.

We return to the abstract nonlinear equation (4.3) to consider conditions on f of
(4.1) so that F of (4.3) will satisfy (H6) and hence the results of $§ 2 and 3 will be
applicable. Define Qs = {gs € R™|q € Q} where Q = R*>™** is given for (4.1). We impose
the following hypotheses on f.

(H6") The nonlinear function f: Q¢ %[0, 1;]x[0 1]1%xR X R -+ R satisfies:
(@) For each (g v,w)€QsxR% the map (4x)>f(qetx,v,w) is
measurable.
(ii) For each constant M >0, there exists a function k, = £;(M) in L,(0, T)
such that for all (e, £, x) € Qs %[0, T) %[0, 1} we have

If(@es 1, x, 01, W) —f(qes 4, %, 2, w)| S £1(0)|v1 — 02

for all (v, w)e R? with Iv,lsM
(iii) There exists a function k; in L.(0, T) such that

{f@er &, %, 0, W) = f(@és 4, X, 0, Wa)| S K2(8)|wy = w

for all (g, 1, x) € Q6 %[0, T)x[0, 1], and v, wy, wa€R.
(iv) There exists a tunction k3 in L2(0, T) such that

1£(ge, 8, x, v, 0)| = £s(r)|v] + 1}

for all (qe, 4, x, v) € Qs %[0, T1x[0, 11X R.
(v) For each (¢, x,v, w)€ [0, ﬂx[o 11X R?, the map qs-f(ges t, X, v, W) is
continuous.

Employing rather standard arguments and results from analysis (e.g., see [15,
Lem. 16(b), p. 196] in connection with (1)), it is quite straightforward to verify under
(H2) that (H6*) for f implies (H6) for F in the example under consideration. We can
therefore appeal to Proposition 2.1 to guarantee existence of a unique mild solution
of 4.3)forany q € Q.

Summarizing, we have shown that under (HQ), (H4) and (H6*) the conditions
(H1)~(H9) hoid for the abstract formulation (4.3) of (4.1)-(1C,)~(BC,) when consider-
ing the modal approximation scheme

N
2 () =A@ () + P Fa o

"(0 ZQO‘:
N(o)) PN(:'#:
in #V(q). The convergence of Theorems 3.1 and 3.2 is thus assured and we may,

4.8)
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when an appropriate fit-to-data function is defined, appeal to Theorem 2.1 to obtain
a solution of the associated identification problem for (4.1)~(IC,)~(BC,). For example,
suppose we are given observations $(4)eR’, i=1,: -+, 7, for (0(t. x1), " * *, 0(t, 1))
in (4.1) where 054, <:--<t, ST Let u(t; @)=(ui(t,"; q), uxt,*:q)) denote the
unique mild solution of (4.3) where we observe that u,(7; q) € Ho for each ¢, ¢, 0 that
pointwise evaluation in [0, 1] is a meaningful operation. Let J have the form given
in (2.4) where now £(1,, )= col (uy(fy x15q)s* * -, w1(t, x15q)) and C(8, q) is an Ix
I-matrix depending continuously on q in Q for each i. Then clearly this J satisfies
the continuity requirements of Theorem 2.1. Furthermore, it is easily scen that the
initial data in (4.3) depend continuously on ¢. For the modal i recall
that PV(q) is independent of g and finally note that the continuity of g+ T (¢; q)z
follows directly from the forms of A” (¢), Q", and K" given explicitly in (2.10), (4.4)
and (4.5). The conclusions of our deliberations for Example 4.1 may thus be stated:

THEOREM 4.2. If (HQ), (H4) and (H6*) obtain, then the problem (ID") for (4.8)
with J as defined above has, for each N, a solution §~ € @< R*™*°. Letting {§"} be
any subsequence of {§"} converging to § € Q, then § is a solution of the problem (ID)
for (4.3) and moreover for each t [0, T,

w™e; 4™, wi (e 4¥0) — ae; @), ua(e; )+ 0

as N; - where (1, uy) is the solution of (4.3) and the norm is that of Hy x H°.

Remark 4.1. We remark that the dependence of the norm on ¢ in the above
treatment of hyperbolic systems is somewhat artificial. While one cannot effectively
rescale the time variable to remove the g -dependence in problems where sampling
times _(observations) are important, one can rescale the state variables (use w(t) =
1/Yq10, in piace of the variable used in (4.3)) to avoid use of a weighted norm. We
chose not to do that in our computations for Example 4.1. A preliminary consideration
lends one to conjocture that such & resculing does not result in simplification from a
numerical viewpoint.

Example 4.2. Parabolic equations 1. For our second class of examples we discuss
scalsr parabolic equations

4.9) o -%(pu,). +q0+f@d a6 x,D)

for t>0, x €[0, 1] with initial and boundary conditions

e "“’""‘.’:5. délx), 0Sxsl,
(BO) Ro(,)=0, j=1,2.

l-lenwebm that gy H®, v, x) (or (1, x;q)) is in R, and ¢ = (q1, 42,43, 90) € Q
where Q<R*™*? and ¢, =(q}, -+ *,q") for j =3, 4. The operators R;, R; defining
the boundary conditions have dosnain /> and are given for ¢ € H? by

(4.10) Ry = a9 (0)+ ap¥'(0) +a;s9 (1) + ad'(1),
where a;s ¢ R. We impose the following conditions on k and p in (4.9) and the a,:
(HP1) The functions p, p, and k are coutinuous with k(x)>0, p(x)>0for 0Sx S 1.
(HP2) The matrix

(:n @53 Qi3 a:)

\Gay an a1 a

hes rank 2 and we have p(0fai1a2n ~aaan} = p(I{aisaze —~ arean}.
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We shall also assume that our parameter set Q satisfies hypothesis (HQ) already given
above.

To apply the redults of §§ 2 and 3 we again rewrite our system as an abstract
evolution equation. Although we consider here only a scalar equation, the results we
present generalize immediately to coupled systems of parabolic equations. Indeed,
we present numezical results in § 6 for exampies of such systems which are of interest
in biological applications (see [4]), among others.

We define the general Sturm-Liouville operator A(q) (our operator here is the
negative of the one found in the literature cited below) in H° by Dom (A(q)) =
{WeHRy =0, j=1,2} and A(q)¥ =k '(qip¥,); +42¢. Then (4.9)~(IC)~(BC) can
be rewritten as ‘

s()=A@Qw(+F(g.t0(), >0,

(4.11) n

0(0)=‘§14‘3¢u
where F(q,t,v(t)=f(gs -, v(s,+)) and the equation is taken in the state space
X(q)=%w(HC (-, ) with ($,¥)=fo #(x)¢(x)k(x)dx. We note that, unlike in
Example 4.1, here the state space actually doesn’t depend on q.

Spectral results for the operator Alq) are readily found in the literature—e.g.,
see [28, p. 182), [20, p. 126]. The hypotheses (HP1), (HP2) imply that A(q) is self-
adjoint and its spectrum consists of a countable number of real eigenvalues {A;(q)}/=1,
each of multiplicity less than or equal to 2, and, moreover, these eigenvalues can be
ordered 80 that —0 <+ HA, BA;4 S -+ 54, <. The cigenfunctions {¥,}i%,
corresponding to A(q*) where ¢*=(1,0, - - -, 0) form a CONS in #.

We further observe that the eigeavalues {A,(q)} of A(q) are bounded above
uniformly in q on bounded subsets of Q. This is easily seen as follows: Let i, be the
eigenvalues of Ao=A(g*) (i.e., Aoy =k ~'(ps,),) with corresponding eigenfunctions
¥, From our remarks sbove we have },5d,/=1,2, -, for some positive finite
constant &. The eigenvalues for A(q) are then found to be A, (q) =gk, +q; (with
eigenfunction ¥,) so that we find A;(q) Se on bounded subsets of Q, where w is
independent of q (but depends, of course, on the particular bounded subset of Q
involved)

We define the spproximating modal subspaces of X(g)=# by #"=
mn{\l',.n-.',}mdhtf':’-’ﬁ"mmmmw&
mmhbdo:hnmmm‘d"(q)mdi'" by AV(gq)=
PYA(q)P" snd F™ = P"F. We have the following convergence results.

Temonam 4.3, Suppose that (HQ), (HP1) and (HP2) hold and q~, 3 € Q < R*™*?
are such that q"-" as N+, Then A(J) and AV(Q") generate Co-semigroups
TG ond T (0;q™)on R and T ¢ 4" )2 - T(1; §)3| + 0 for 2 & & with the conver-
oence uniform in t on compacs subsess of [0, %0). Furthermore, if (H4) obrains, then
there exists 6 consmant w indegendens of N and ¢ such that |T(t; ¢)| Se™ and [TV (1; ¢)| & '
¢ fort>0,qeQ and N=1,2, -, |

Proof. Lot Q be any bounded subsst of Q. Then our remarks above imply ‘
existonce of & = o ((J) such that the seif-adjoint operator A(q), ¢ ¢ @ has its spectrum
lying in (—co,3). Hence (ses [36, p. 349] A(q)~al is dissipative, i.c., {(A(g)-

&z, 2)%0 for all ¥ ¢ Dom (A(q)) snd ¢ ¢ Q. For A€ o(A(q)), we have [28, p. 180)
that Alg)-Al lzmamnuhwﬂwhtwhw (Aq)-
Al) Dom (A(q)) = & for A >0 properly chosen. It follows immediately [30, p. 17}, [2,
p. 1751[22, p. 87] that A (g) — &7 ls mazimal dissipative and generates a Co-semigroup
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of contractions on . Arguing a3 in (4.7), we have that A" (g)-&I is dissipative,
uniformingeQ and N =1,2, - - - (it is maximal, being defined on all of #—see [22,
p: 86)), and hence is also the generator of a Co-semi of conteactions.

The above remarks obviously apply if we choose 3={q"’}um where ¢~ +§
or if @=Q where Q itself is compact, i.c., (H4) holds. To obtain the convergence
results of the theorem, take @ = {q”" } U {4} and use Proposition 4.1. Here # =R" = ¥
and conditions (i) and (ii) of the proposition clearly are satisfied. Let @ = Uy, #"
30 that @ < Dom (A(J)) and @ is dense in #. From our remarks above, we have
A(Q¥,;=2,@)¥, For A>max A, (§) we have Al—A(Q) invertible where (A —
A@)Y; = (A ~A,(J)¥,, and it follows that (AT - A(@))® = D. Hence (iii) of Proposi-
tion 4.1 is satisfied. The arguments that (iv) is satisfied are exactly analogous to those
used to complete the proof of Theorem 4.1, here the completeness of the {¥;} yielding
P~ 51 strongly in 2. We thus have established the results of Theorem 4.3.

We turn finally to conditions on £ in (4.9) that will insure that F of (4.11) satisfies
(H6). Let Q. ={q.€ R™|q € Q} where Q is a given subset of R*™*2,

(H6**) The nonlinear function f: Qx{0, T1x[0, 1]x R - R satisfies:
(i) For each (g4, v) € Q4 X R, the map (1, x) - f(qa, 1, x, v) is measurable.
(i) There exists a function k; in L3(0,T) such that |f(qe,t, x,v,)-
f@a t, x, v2)| S K1(D)lo1~ v7l for all (qa, 4, x, 0)€ Q4 %[0, T1x[0, 1]x R.
(iii) There exists a function k3 in L ([0, T]x[0, 1]) such that |f(qs, ¢, x, 0)| =
K2(t, x) for all ge€ Q..
(iv) For each (¢, x, v) in [0, T]1x[0, 1]x R, the map g4~ f(qa, !, x, v) is con-
tinuous on Q,.
1t is an easy exercise to verify that (H6**) for f implies (H6) for F (note that in
this exampie the condition (H2) is trivially satisfied). We thus may invoke Theorem
3.1 for convergence of our modal approximations defined in " by the equation

sV ()= AN (@ )+ P F(q, 1,0V (),

“.12) 1
vV (0)=P" z 4o

For these parabolic systems defined in H°, the question of an appropriate cost
functional is somewhat mors delioate, since in general, point evaluation may not be
meaningful. One possibility (a different approach will be discussed below) is to choose
a cost functional J as in (2.3) where now « = v is the mild solution of (4.11) and we
might sssume, for example, that (x, ¢)- Y (¢, x, ) is continuous for each ¢, We are
agsin in & position to employ Theorem 2.1 (taking into sccount the comments in
Remark 2.2) to establish the following results for this sxample.

Tunonam 4.4. Supposs (HQ), (H4), (H6**) and (HP1), (HP2) are satisfied. Then
the problem (ID™) for (4.12) with J as in (2.3) has a solution 4" ¢ Q < R*™*2 for each
N=1,2,- . If {4™}) is any subsequence of {4~} converging 10 € Q, then § is a
solution of (ID) for (4.11) and for each t &[0, T} we have lo™(¢:8") - v(¢; )0, as
N+, thgn v, 0™ are the mild solutions of (4.11), (4.12) respectively and the norm
lathatof H',

Example 4.3. Parabolic equations 11. We consider agtin the parabolic equation
(4.9) with initial condition (IC) and boundary condition (BC) but with slightly more
restrictive conditions on the boundary operators R than these given in (4.10)-(HP2).
We treat problems with boundary operators chosen ttum the standard Sturm-

—
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Liouville operators (see [14, p. 145), 13, p. 291)

(A) R =#Q) or Ry =9(l);

() R =¢'0) or Ryy=9'(1);

€  R=¢'0)-0w(0) or Rw=¢'()+aw(l), a1,0:>0;
D) R =¢0)~¢(1) and Ry =p(0)'(0)-p(1)¢'(2).

In the sequel, in referring to the standard Sturm-Liouville boundary conditions
(SLBC), we shall mean any combination of choices for R, and R, from (4.13) (A)~(C)
or the periodic boundary conditions arising from the choice of R;, R, given in (4.13)
D).

Our main objective is to discuss the use of the simple pointwise fit-to-data criteria

(4.13)

4.14) Iig.o(-;a).9)= £ 90~ Cleo )t )

as defined in § 2 (see (2.4) and the discussions thereol). When treating (4.9) in ¥ as
we did in Exan ple 4.2, it is by n0o means clear that the associated ID problem with
(4.14) is well posed. Indeed, one must first justify the pointwise evaluation (in the
spatial coordinate) of v involved in defining £; assuming that this can be done, one
mmenmtﬁnaneonddlmwtyinthttheconmm(dmm3lmd43)
of o™ (t;qV) 1o v(t; §) is in the ¥ (i.e. H°) norm. Since J,(-, -, §) is not continuous
on @ xC(0, T; %), the results of Theorem 2.1 are not directly

We turn first to the difficulty raised by point evaluations in (4.14). Intlmregud
we note that the mapping w - J1(g, . §) from C(0, T; #) to R, where J, is given
ins ll)ad*" mthemodalmaﬁnedin&mﬁelz is well defined for
each N=1,2,-.-, and, in particular, is well defined on solutions of (4.12). Hence
thenyproximntngpmblem(m")mmtbhmweﬂpowdmmyevent
Justification of point evaluation for (ID) with J; depends beavily on the smoothing
properties of (4.9) or, equivalently, (4.11). Roughly speaking, for ¢ >0 the solution
values v(t; q) will be contained in Dom (A(q)) i only £+ £(t) = F(q, t, v(t)) is smooth
enough 8, p. 192). However, since we wish to avoid additions] smoothness hypotheses,
we choose a slightly more technical route to the same end.

Recalling the arguments for Theorem 4.3, we have that A(q) - e/ is seif-adjoint
and maximal dissipative where @ can be chosen independent of ¢ & Q. It therefore
follows [9, p. 47) that ~A(g) +«l = 3*(q) where 44*(q) denotes the subdifferential
of the functionsl ¢ *(q) is given by

- 1/2 - 1/2
4.15) "(ﬂ)(u)‘{ik’t A@)) “'2 # ueDom (wl - A(g)) ',

M(J-A(g»‘"mmmummbymndudmm p. 281)
is known to exist. Under sssumption (H6*®) for f, we have that (H6) hoids for
F(q.t.w)-f(x. »w) and in particular (see (FIS){1if)) the mapping 1+ F(g, 1, v(7; q))
isin L;(0, T; 2) for t -+ v(t; ¢) the solution of (4.9). Thus (see [9, p. 72] and note that
s weak solution in the sense of [9] is in fact the unique miid solution in our sense,
whsich is, , 410 8 strong solution) it follows that the map ¢ -+ $*(g)Xv(t; 9))
isin L,O,T ubmmuamun»oa
o7l hmd«.mumo(t q)¢ u-a«»"’mm»om‘n
M,.uummmm 1t remaing to note that Dom (wf ~
Ag)reHt. hmﬂmﬂ“ﬂn“wmmamm

" - 2 A e X A e — e e

-———t
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results on interpolating spaces—see [27, p. 9). Briefly, by defining X (in the notation
of [27]) as either H' with appropriate boundary conditions (in the event of B.C.’s
using combinations from (A) and (B) or B.C.(D) from (4.13)) or H  with an appropriate
energy norm (in the event elastic boundary conditions from (C) of (4.13) are involved)
and Y = ¥, one can make the identification A = (wf — A(q))"/? with Dom (A) = X.

We can therefore summarize by stating that conditions (HQ), (H4), (H6**), (HP1)
in the case of (SLBC) are sufficient to allow point evaluation in J,.

If we wish to relax the continuity hypothesis on J in Thearem 2.1, it is necessary
to consider in more detail the fit-to-data criterion J" (q)=J (g, 4™ (-; g), §) of (ID™).
The following proposition will be useful in our deliberations; we state and prove it
using the notation of Theorem 2.1.

PROPOSITION 4.2. We suppose there exist maps S and ", N = 1,2, - -, from the
1 compact set Q 10 R satisfying:

() foreack N =1,2, - -, the map q-»F" (q) is continuous on Q;
(ii) for any q € Q and any sequence {N,} with N, -» o, there exists a subsequence
Ny, such that 3" (q)~+ 5(q);

(id) for any " + @, there exists a subsequence {g™*} such that $™(¢™*)» $(@).

Then for each N there exists " € Q that minimizes $" over Q and, moreover, for
any convergent subsequence {q™*} of {q"'} with ™ + 3, & is a minimum over Q at §.

Proof. Let ¢V denote the minimizer (whose existence is guaraateed by (i) and
the compactness of Q) of 5" 30 that $™ (¢") 5™ (¢) for all g € Q. Suppose ¢"* +;
thea by (iii) (reindexing for convenience in notation) we have $™(q™)-»$(q) for
some subsequence {9™} of {g™'}. We use this to argue that $(3) = $(q) for g€ Q. if
weo sssume that there exist § € Q and | such that F™(q™)>F(§) for i 2 ], then by (i)
there is yet another subsequence of m,, denoted by m;, such that $™(§) » $(§). Hence,
for sufficiently large ; we have $™s(q™") > #™(§), which contradicts the definition of
q™ as s minimiver for $™.

To use Proposition 4.2 with our particular J~ = #" defined using J;, we must
consider special cases for which hypotheses (i)-(iii) of that are readily
verified. We discuss the homogeneous (f =0) version of (4.9) in & in this regard.

ProproSITION 4.3. Consider (4.9) with f m 0, initlal conditions (IC) and boundary
conditions (SLBC) from (4.13). Assume that (HQ), (H4) and (HP1) obsain. Then for
the solutions v™ (-;q) of the approximating equations ((4.12) with F=0) we have
{v" (9)lq € Q} is a relatively compact subset of C(t*, T; C(0, 1; R)) foreach t*€ (0, T').

Since the proof of this result consists of checking compactness criteria for a specific
subset of C(t*, T; V), where Y is a Banach space, we shall only sketch the ideas
involved, leaving the details to the interested and determined reader. §

First recall that equation (4.12) is in ¥V =span (¥;, - - -, Wy} where (W}, is 3
the CONS of eigsafunctions of A(q*) with corresponding eigenvalues X, = A,(¢®) (see
the discussion immediately preceding Theorem 4.3). Solutions o™ of (4.12) have the
representation (see (2.8)-(2.12) and the associated discussions) o™ (1; q) = T/%, wi' ()W,
where w!'(f) = wi'(0) exp {(X,g1 +42)¢}. To verity relative compactness of the desired
set, one can use the Ascoli theorem [28, p. 211) which requires equicontinuity of the
set along with relative compactness of {v"(;q)lqe QN =1,2,:-- .} in C(0,1;R)
for each ¢ in [1*, T'). Use of the representation results along with standard estimates
in Fourier analysis (Parseval, Cauchy-Schwarz, etc.) reduces the compactess criteria i
to the task of verilying !
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it is easy to verify existence of an w independent of g € Q such that A(q) ol is
dissipative and symmetric in %, that Dom (A(q)) is dense and R(A(q)—AI)=# for
some A, chosen sufficiently large and independent of g € Q. In particular, A(q) is
therefore self-adjoint [28, p. 97]. The ximating subspaces #" are defined by
#" =span {,, - - -, x} where &,(x) = (v2/jn) sin jwx a8 in Example 4.1. We recall
that {$,)7" is a CONS in #. As before we let PV :#-#" denote the canonical
orthogonal projections and AN (q)=P“A(q)P", FN(q,1,v)=P"F(q,t,v) where
F:Qx[0, T)x %+ is given by F(g, 1, v) =f(q, 1, -, v). Formulation in # will require
additional assumptions on f, to be detailed in (H6***) below. We then have:

THEOREM 4.5. Suppose that (HQ) holds and let q~, 3 c Q be such that q~ - §
as N+, Then A(J) and AN (g") generate Co-semigroups T(t: 3) and TN (¢;9") on
® and |TV(t;q™)z - T(t; D)z| 20 for each z € £, with the limit uniform in t on
: compact subsets of [0, ). Furshermore, if Q is compact, then there exists a constant
. independent of N and q, such that |T(t; q)|Se* and |T™(t; q)|Se™ for t>0,qeQ,
H and N = 1, 2, cer,

The proof of this theorem is quite similar to that of Theorem 4.3 and will therefore
not be given here.

We shall simply list conditions (compare with (H6**)) on f that will insure that
F satisfies (H6).

(H6***) The nonlinear function f: Q4 x[0, T]x[0, 1]XR - R satisfies:

, (0) For each v e #, the map x »£(q, 1, x, v(x)) is in #.

J @) For each (g5 0)€QixR, the maps (4x)f@etx o), (x)>
{ fs(q4: 4, x,0), and (1, x)"fu(Q‘i 4, x,v) are measurable.
' (i) There exists a function &1 in (0, T) such that |f,{ge ¢, %, o) S k1(e)

P U, .

for all (g4, x, v) € Q4 %[0, 11X R;; for each M >0 there exists k3 in L,(0, 1)

MM Ifx(qu ‘ Xy 01)‘fx(44- hLx, ul)l Sﬂ'(l)kll "0:, M lf'(qh L, vl)- ‘
£.@e t, %, 0 SEX(Olo1—vz| for all (g, x)€Qx[0,1] and 0y, v with

for S M, |ol S M. .

(ili) There exists £; in L3(0,T) such that |f(ge,t x,0)|SKx(r) and

Vfe(@er 8 x, 0)| S K2(e){(1 + |0} for all (g, x, 0) € Qe x [0, 11X R.

(iv) For each (4, x, v) in [0, T1%[0, 1]x R, the maps g4 f(qs, 1, X, ), qa=>

fx(Qh 4 x, 0) and m*f.(q« ¢, x, v) are continuous on Q..

The fit-to-data criterion (4.14) together with the state equation in # are such
that the map (g, 0) -+ Ji(g, v, §) from Q X C(0, T; #)- R is continuous and, therefore,
Theorems 3.1 and 2.1 are readily applicable. We leave a precise statement of the
theorem for (4.16)~(IC)~(DBC) with (H6***), analogous to Thoorem 4.4, to the reader.

In concluding this discussion, we remark that numerical implementation of a
scheme formulated as above in # (the projections in defining the approximations in A
(2.8)-(2.12) are now in the H} inner product) is, of course, somewhat more tedious
from & technical viewpoint than that for schemes such as those in Example 4.3 where
the state space is H°,

Bxample 4.4. Diffus‘on-convection equations. For the final example of this sec-
tion, we return o the setting of Example 4.2 and indicate how, in (4.9), one might
include convection (or advection) terms that are independent of the Sturm-Liouville

operstor (pu, ). To illustrate the ideas, we, for ease in sxposition only, take a simple b
linear sxample (nonlinearities of the type discussed previously present no essential §
dificulties) involving only diftusion and convection terms, Consider then ]
417 O = q10m 420, %
i

! L

R — !




838 H. T. BANKS AND K. KUNISCH
with initial conditions (IC) and the Dirichlet boundary conditions
(DBC) v(t,0)=0v(,1)=0.

As state space we choose H® with its usual inner product. We define the operator
A(q) with Dom (A(g))=H’NH} by Al@W =q1¢"+q:¢'. We then have A(g) is
dissipative since (again we assume (HQ) holds) for z € Dom (A(q)),

(AQ)z, 2) =q1(Zxxs 2) +q2(2x, 2)
1
= —qilzeP+q2 jo (2%/2) dx
= ~q1)z,[*=0.

Thus if we assume (H4), we find that A(q) is dissipative uniformly in g € Q.

In considering modal approximations, the question of existence of a complete
set of eigenfunctions for the operator A(q) arises naturally. Standard spectral results
for nonself-adjoint operators allow one to answer this question in the affirmative.
First, A(q) is a relatively bounded perturbation of a discrete spectral operator and is
itself a discrete spectral operator (see [15, Thm. XIX.4.16, p. 2347} —in this case the
boundary conditions (DBC) are easily seen to satisfy the necessary regularity
hypotheses—see [15, p. 2341-2344)). It follows that o (A (q)) consists of point spectrum
and that the eigenprojecﬁom {E\,} (see [15, p. 2292]) of the resolution of identity for
A(q) satisty T;%, E\z -+ 2 for z e H® (see [15, Cor. XVIIL.2.33, p. 2257], along with
the properties of the projection operators—e.g., [15, Lem. XVIIL.2.31, p. 2255)).
One can easily argue for our example that the generalized eigenmanifolds are one-
disensional so that the eigenfunctions ¥,(q) = exp (—q2x/2q,) sin jmx corresponding
to the cigenvalues A/(@)=—j*n*q1—q3/24: form a complete (but not orthogonal) set
in H".

We thus also have that A €p(A(q)) if A >0 so that (A(g)—1) Dom (A(q))=H°
for A >0 and hence A(q) is maximal dissipative [22, p. 87], [30, p. 17]. The operator
A(q) generates a Co-semigroup T'(t; q) satisfying |T(¢; q)|Se* forge Q.

For a modal approximation scheme, it might be tempting at first thought to use
the finite-dimensional subspaces XV (q) = span {¥,(q), - - -, ¥n (@)}, but of course this
would prove rather difficult computationally in identification problems. Here we choose
to use the basis elements @,(x) =2 sin fx since we know {®;}7° forms a CONS in
H*® and &, ¢ Dom (A{q)). We thus define H~ =span {®,, - - -, Oy} and remind the
reader that “modal” is something of a misnomer for this scheme (actually, we took
a similar spproach in Example 4.1 in choosing basis clements corresponding to
4."(1.0. tee ,0) fined).

MMnmA"(’)-P"A(q)P" where PV are the orthogonal projectors
Pz =TI, (z,®)®, 0nt0 H" which converge strongly to the identity on H®.

To develep appronimation results similer to those given in Theorems 4.3 and
4.4, €e enontinl cflort remsiitag in our example is to verify the stability and
commistency hypothesss (), (I}, (iv) of Proposition 4.1 with f=A(J) and ™ =
A" (") where ¢” < ¢ 1n Q. Stabiliiy (L., (iD) is imenediate while consistency s slightly
more delicate. A nedwsal cholee (the one we have weed in provious examples) for the
set D is UN., & tiave then (v) is trivial %0 verily. However, it is not apperent to
us that this choice of 9 setislies (ili) of Proposition 4.1. We choose instead $ =
UR.1 27 (), where £7(§) is dofimed sbove in termm of the true modes ¥,(q) for
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A(g). Since AT -A@)V,(@)=A —A)¥,(3) and the set {¥,(3)} is complete, (i)
is easily established and it only remains to show AN (¢V)z > A(§)z for z € 9.
We first note that from

AN @)z - A@)z|sIPV (A(@Y)PNz -A@)2)|+|IPVA@)z - A@)z)

and the strong convergence of P" to I, it is sufficient to argue A{g")P"z > A(§)z
for z € @, It suffices to argue this latter convergence for z = ¢, -\if,, (§) fixed. For this
choice of z we find

N N
A"@"P = A" T W )= T (e B)AGM,
N
= ,§1 ('ﬁh (bl){qr(b; +q¥¢;}
N
= L (o O (/*m")®; +fraixi}

N N
=q7 121 W, —f zﬂzq’;)‘l’; +q3 le (U, Jr®p)x;

=41 (e )0 +q2 T (b1, =X )X0
v:?ze;gq;,(x) =v2 cos jmx and we have used the facts that x} = —jr®; and =
Integration by parts twice (using the fact that ¢, and ®; are in H§) yielas
s O7) = (W&, Bp)
while a single integration by parts establishes (again use ¢, € H)
W —x1) =W, xy)-
We thus have

N N
AN@" PNy =gt El (W}, O)®; +q7 1}-:1 (W XX

where both {®} and {x;} constitute CONS in HP. Since ¢ +4,, ¢)’ 32 we thus
obtain A™ (g7 )PNgy > 191 + 829} = A(§)¥n, &8 was desired.

The theorems for these approximation ideas for the (ID) and (ID") problems
with (4.17)=(IC)<DBC) are so similar in statement to Theorems 4.3 and 4.4 that we
shall not prolong our discussion by giving a precise statement here.

Wlthnmdtohvhmnuﬁono!thhwhome.wepointoutthnA(s)dounot
leave the subspaces H invariant and hence the matrix representationof AN = P,
(see (2.8)~(2.10)) is not a simple diagonal matrix. However, for equations such as
(4.17), it is rather casily seen that (2.10) is given by

—qifim? foris/,
(AY@k= )0 forisjandi+] even,
zn,[;,-i‘? fori v and i+ odd.

While this is not a simple matrix, it doss allow a rather straightforward implementation -
of the scheme in actual computations,

g
- Y el - . T T s -
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S. A bowndary comtrol problem. The theory developed in §§ 2 and 3 can also
be applied to optimal control problems governed by partial differential equations. We
shall demonstrate this by means of a specific example. Consider as a special case of
(4.1)~(ICy)~(BC,) the problem

5.1) D = Oy

for t >0, x €[0, 1] with initial and boundary conditions
acs) 60, x)=¢(x), 5(0,x)=¢(x),
(BCs) 5(,,0)=5:1(t), (1, 1)=150),

where the boundary control functions s; are chosen in &={s|se H*(0, T;R),
s(0)=s'0)=0} and (4, ¢)cHoxH’. The transformation o(f,x)=
B(t, x)~ (1 —x)s1(t) — xs2(¢) applied to (5.1)-(IC5)~(BC;) leads to

5.2 U = Oxx — (1 = x)(1) — X (52)n
(ICs) v(0,x)=¢(x), 0(0,x)=¢¥(x),
(BC,) v(1,0)=0v(,1)=0.

We let w =y, and reformulate (5.2)—~(IC()-(BC,) as in Example 4.1 in the Hilbert
space & = H;x H® with the usual inner product. This leads to a special case of (4.3)
given by

3 =G0 (o))

where

0 0
a=(3 o v=r0=(2 2) er=col@nir @01

The finite-dimensional subspaces & = %" (¢*), ¢*=(1,0, - - -, 0), are chosen as in
Example 4.1 and again we take AY = PYAP", where PV : % +» %" denote the cawonical
orthogonal projections. For the convenience of the reader we repeat the family of

approximating equations given by

6o o) =) e (ig)=r ()

In the light of Theorems 3.2 and 4.1 (with ¢~ = ¢* for all N), the solutions (v" (¢; o),
w¥(t; @) and (v(1; @), w(t; o)) of (5.4) and (5.3), respectively, satisfy limy 0"@;0),

- wh(t o) =(v(t; ), wit; o)) in a.'nnﬂorulyintt[’o, T, for any 7 >0 and uniformly

in o, 38 o varies in bounded subsets I of L1(0, T'; R”). We shall also need the following
technical resuit.

LEMMA 5.1. The operator &: L4(0, T; R)+C (0, T; X) defined via (Fo)(t)=
fo T(t—1)yor(r) dr is compact.

Defining the (FoX1t)=fo T (¢t - r)PVyo(r) dr and using the convergence
of the (1) to T(r), generated by A" and A, respectively, it is easily
seen that & -+ & in the operator norm topology. The proof is compieted once one
argues that the maps $" themselves are

The sbove remarks provide the teciutical tools that can be applied to & variety
of optimal control problems, one of which will be outlined below. For a more complete
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discussion concerning approximation of optimal control problems for infinite-
dimensional systems by sequences of optimization problems for finite-dimensional
systems, we refer to (7] and the references given there.

We let X, be any fixed closed convex subset of L;(0, T; R?) (possibly L, itself)
and choose nonnegative continuous functions go: ¥+ R, g,: C(0, T; ¥)»>R and
g2:L3(0, T; R*)-» R. The functions g, define the cost functional f: £, R by

(5.5) F(0) = gol(v(T; @), w(T; o) +g1((0 (-5 &), w(+; @) +g2(0).

The optimal boundary value control problem associated with (5.1)—(IC3)}~(BC,), (5.5)
is then taken to be:

@) minimize J over Ze.

Suppose that a solution & =col (¢, 32)€Z.4 of (P) is found; this will uniquely
determine boundary controls §, and §, in &. The approximate optimization problems
are defined by

@") minimize J~ over S,

where

(5.6)  JV(0)=gol("(T; ), w" (T; oM +81((0" (3 0), w¥ (-; 0))) + £2(0).

Notice that (5.6) is an optimization problem associated with an ordinary differential
equation. We shall need two standard assumptions on the functions g;:

(G1) The continuous functions g; are convex,
(G2) gi0)>oasfoj>c,

As a consequence of (G1), the maps o »J(o) and o +J"(c) are convex, which
together with (G2) implies the existence of solutions of () and (#"); these solutions
are in addition unique if one of the g; is strictly convex. Let o denote a solution of
(®V). Then by (G2) it follows that {o"'} must be a bounded subset of L(0, T; R?).
Indeed, the assumption |o”*|-»o for some subsequence {Ni} contradicts the
inequalities (0™ )5S (0™)ES M (0)+S(@)<® for all ¢ &L;(0, T;R?. The
convergence of JSM:(g)+J(s) is a comsequence of (V(t;0),wV(t;0))
(v(t; o), w(t; o)) uniformly in £ €[0, 7] and (G1). Since T4 is convex and closed it
hwuk#ycbndwthutheumuammyeonvemntmbnqm{v"'}d{v"}
with o"* converging weakly to some & € 2.4 By Theorem 3.2, Lemma 5.1 and the
" estimates

o™ (t; ™), w(e; ™) = (0(1; 8), wt; )]
S 0™), wh(t; ™) - (0(t; ™), wit; ™))
+l@(t; ™), wie; M) = (015 8), we; $))s
it follows that
@Mt ™), whr(t; ™) = (0(r; 8), w(t; 8))

in ¥ uniformly in ¢ ¢ [0, T'). Since convexity and continuity together imply weak lower
semicontinuity, we obtain the following string of inequalities:

J(0) Slim ind {gol((6™(T; 0™), w'H(T'; ™)
+ (0™ 50™), (™) + g2(0™)
o lim int /" (0™*) & lim sup /" (¢) = J (o)
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for every o € X,4. This implies that & is a solution of (#*). Further standard arguments
mbewdtoshowthaumaeommyoffmplmthna meltoonvergesweakly
to the unique solution & of (%) and that o™ converges strongly in L(0, T; R?) to &
it J is strongly convex (see [7]). We finally summarize some of the above discussion in

THEOREM 5.1. Suppose that (G1) and (G2) hold. If {o™} denotes a sequence of
solutions of (P"), then there exists a subsequence {o"*} conurgmg weakly to a solution
é of (P). Furthermore, J (@™ )+J(3) and (V™ (t;0™), w™(t;0™)
(v{t; &), w(t; #)) uniformly in t [0, T). Moreover, G determines uniquely boundary
controls §4, §2 in &.

6. Numerical examples. In this section we briefly summarize our numerical
findings when applying the modal approximation algorithms to some of the
identification problems that were outlined in § 4. The aim here is to demonstrate the
feasibility of the method for both hyperbolic and parabolic systems. As it turns out,
modal approximations appear to be very well suited for hyperbolic systems, while for
certain identification problems for parabolic systems we encountered some essential
difficulties which one should take into consideration before attempting any practical
use of the method for this type of equation. This will be explained further below. In
developing our software packages, no great attention was given to maximizing
efficiency in implementing the algorithms, or to minimizing computer time. The
ordinary differential equations (see (2.12)) that arise were integrated by a simple
, fourth-order Runge-Kutta method (with step size varying from one example to the

; next from .0125 to .05), and the coefficients of the nonlinearity and the initial data
t (see (2.9) and (2.11)) were computed by employing Simpson’s rule. The minimization
! problem arising in the identificatiori problem for the approximating ordinary differen-
! tial equations was numerically solved by using an IMSL package (ZXSSQ) employing
the Levenberg-Marquardt algorithm. The “‘exact” solutions, which were used for the
“data” § in the fit-to-data critetion J, were generated by a Crank-Nicolson algorithm
whenever solutions in closed form were not available. These solutions were generated
mmdmnwwdmemmmmmeequm-demwmu
referred to in the sequel as the “‘true” parameter values,

In the examples below, a fit-to-data criterion of the type (24) with C(t, q) =1
was used throughout. Further, we usually (except in Example 6.5) let T =2 and chose
5 and x,l equally spaced in [0, 2] and [0, 1], respectively, 3o that |t; —¢,_;|=0.2 and
IX,"'X,-I = (.28,

Example 6.1. Here we return to Example 4.1 and consider the linear one-
dimensional hyperbolic equation, which we repeat for convenience:

Uy = q10xs + Q20 +qsv  for (>0,
2(0,x)=qux(1~x) for0sSxs1,
0:(0, x) = qs¥ (x) for0sxs1,
v(,0)=0(,1)=0, fort>0,

where §(x) =2x for 5 €[0, .5] and #(x)=2(1—x) for x &[.5, 1. Below, we present
numerical resulty which are typical in making numerous runs with

this example. mmmuq"ghmmhwmmmmmm
are recorded in the botiom row of the tables, wheress the next-to-last row contains
the tree parametsr valuss. The tables contain only those parameters on which a search
nmmmmMmmmmmm
were beld fined a¢ the trwe valuee.

‘ et e B 2 S5
T N B |
,WM, B
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In a first run (Table 1) we assumed that g; =1 and qs=0 were known and we
were searching for q = (q1, 42, g4) with the true parameter values chosen to be § =

(1.414, -1, 2) and with startup values ¢"°=(1, 0, 1).
TABLE 1
N q ' @
4 1.4103 ~0.9961 1.9978
8 14126 ~1.0021 2.0031
16 1.4129 ~0.9968 2.0005
32 1.4129 ~0.9992 2.0000
i H true value 1414 -1 2
: : ™ 1 0 1

A feature of interest for these models used with the Levenberg-Marquardt
algorithm is the range of convergence for the parameter g. For this specific example,
wemmedwtwmpuﬁ&omkmmdthew%nq,,qz,q.mmuonto
q,,q,ﬁxedwhﬂeﬂenutzm;oneotq;, 2, @o. It was observed that for ¢1°°, ¢3°, ¢4”°
takenintheranges 1 541° 55, -$5q7" %0,.55¢4"° §, respectively, rapid conver-
! gence was still obtained. (The actual range of convergence may be much larger; these
were merely the ranges of values we tested.)

In a second run (Table 2), g1 = 1.414 and gs = 1 were assumed to be known and
the search was performed on g = (g2, g3, ¢4) With true value 4 = (-5, 4, 2) and startup
values ¢™° =(0,0, 1).

TasLe 2 '
N ' & &
: 4 -499% ana 1.9997
4 ] -4.9903 40372 2.0028
; true value - 4 2
™ ° ° 1

Example 6.2. This is the nonlinear exampis (again & spesial case of Example 4.1):
Y= q10a +0+qul +0)” fore>0,

; #(0, x) = gex(1-x) for0Sz &1,
; 0:0,x)=0 fr0Bx 81,
v(,0)=v(1)=0 fort>0.

|

i Wemumwmo-umm.n.mumm
‘ wers taken 10 be ¢ = (1, 1, 0). Por the sumsericnl solutions we refer to Table 3.
Exemple 6.3. This is snother nanlingsr equetion of the form

%= Qi + @30 +qev’ fur >0,

v0,x)oqu(1-2) fw0Essl,
58, 3)=0 08z 81,
O =vis 1)=0 fort>0.
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TAaBLE 3
N 'y '} &
4 14141 1.9990 09735
8 1.4148 2.0013 0.9790
16 14152 2.0009 0.9788
true value 1414 2 1
q'“ 1 1 0

Although this nonlinearity does not satisfy (H6*) of Example 4.1, we report in
Table 4 on calculations carried out in the subspaces XN of ¥. It is clear that the
algorithm is converging in this case; indeed, one can relax the assumptions (H6*) so
i as to prove convergence for such nonlinearities; see the discussion involving (A6)(i),

(ii)in § 3.
TABLE 4
N @ @ o @
4 1.3835 0.6774 1.9999 1.2368
8 1.4107 0.9875 2.0001 0.8973
16 1.4138- 0.9983 2.0001 1.0016
true value 1414 1 2 1
g™ 1 0 1 0

We turn now to some special cases of the parabolic problem (4.9)-(IC)~(BC). As
pointed out earlier, parabolic equations can be more formidable than hyperbolic ones
to handle via modal approximations. The difficulties are more than just a simple lack
of identifiability (however this concept is defined), which, of course, can lead to ‘
substantial numerical embarrassment. Indeed, parabolic equations can lead to stiff
systems of approximating ordinary differential equations. The reader can quickly
convince himself of this fact by taking Dirichlet boundary conditions and putting
pmkm] and f=q,=0. In our computational pursuits we did not make an effort to
use specific numerical methods for the stiff systems that can arise, but we simply
decreased the step size in the Runge-Kutta algorithm to effect numerical stability. A
perhaps more ressonsbie approach to avoiding these difficulties due to modal approxi-
mations is to take a completely different approximation scheme, say for example
spline-based methods. We have pursued this idea successfully for parabolic systems
and the details of those investigations will be reported elsewhere.

The fit-to-data criterion is chosen to be (4.14) with C(1,, q) =1 in all the scalar
examples below. In the two-dimensional system of Example 6.7, we used the obvious
analogue of (4.14) for a coupied system of equations.

Example 6.4. We consider the linear equation

O = @10x: + 420 fort>0, _
00, x)=dx)  for0=xs1, :
v(£,0)=0(,1)=0 fort>0, ;
where ¢ is the “hat”-function defined in Example 6.1. The modal approximation ;
scheme falled to identify q: sad ¢ simultansowsly, although it did identify each of ! o
them individually s0 long s the other ons was fixed. This is by no means surprising; ; |
the exact soiution of the above problem has the explickt representation v(f, x)= !

Z,‘-.w)-hm.m-,«)--mq( ~ @19 and o, (0),/=1,2, - -, are the o
Pourier cosficients of the sine series for §. At time ¢ =0, the values of q,, ¢ have . ‘

‘ .
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no influence and at the following times t = .2, .4, - - - the decay of the exponential
term in addition to the decreasing magnitude of the coefficients v,(0) cause successive
terms to contribute less to the criterion J. Moreover, in this example, v5,(0) =0 for
j=1,2, .-, so that the criterion uses essentially only one mode to fit the model to
the data. The results from the search on both parameters simuitaneously are presented

R e il

in Table 5.
TABLE §

N ' '}
4 0.0236 0.2313
8 0.0335 0.3289
16 0.0336 0.3296

true value 0.1 0.986

Pl 0.2 . 0.25

eeping q2=.2 fixed and searching for q:, when the true parameter value is

&= landq" =0.25, weﬁndq‘-ooom Similarly, when q; =. luk?tﬁudaad

42 i8 to be identified, with 4, = .986 and q3*° = .25, the algorithm yields 43 = .986004.
Example 6.5. We next consider the nonlinear parabolic equation

0y = Q10 —qat’ for¢>0,
) (0, x) =gqsé for0sx =1,
v(t,0)=0(,1)=0 for¢>0.

It is well known that for g4 0 the above system has a global solution and we are

therefore again in a situation where hypotheses (A6)(i), (ii) of § 3 must be used in l
any theoretical considerations of convergence. Our findings for this example are given

in Table 6. Here we choose T = 1, while keeping the increments between the “‘data”

points the same as before (Ar = .2 and Ax = .25).

: : TABLE 6
* .
’ i
i ; N & & @
i 2 5030 4827 8539
/ 4 A976 $.3001 1.2370
! (] 4988 51774 1.1482
16 5021 5.0845 1.0443
tres value S s 1
| ™ as 1 0
I

L. Example 6.6. We consider
' O™ @10 +244(1 +0)™' fort>0,

v(0,x)=qs¥ for0Sx &1,
0(r,0)=p(,1)=0 for¢>0.

In this snd the next exampis we solved the approximating ideatification problem both
without and with noise. When noies was added, then the Crank-Nicolson data which
mudhﬂ-m-huh-mmwmmﬁﬁm
mean snd variance ¢ = 01. It s accursis t0 report that in these two examples the
schems behaves ia & stable manner wnder the infiuence of noise. In Tables 7 and 8
below, & blank indicates thet this parameter was kept fixed .at the trus parameter
valus. The estimates obtained for this example are recorded in Table 7.
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Tamre 7
N 14 & '}
10 noise; search on g, ¢ 4 $.2275 1.9254
] $.1374 19741
16 $.0668 1.9845
noise o = .01; search on qs, d¢ 4 5.2362 19335
8 5.1459 1.9813
16 $.0749 1.9917
10 noise; sesrch on qy, @3, Q¢ 4 0.2472 5.2846 2.5221
8 0.2301 5.1706 2.3584
16 0.2150 $.0823 2.1746
noise o = .01; search on gy, ¢, 44 4 0.2443 5.2903 2.4941
8- 0.2272 $.1760 2.3301
16 0.2120 5.0873 2.1442
true value 0.2 s 2
. qv 0.1 1 0

Example 6.]. As a final example we consider the coupled parabolic system

U= Q10 +2(1 +qew +0) 7},

W= oWy fort>0,
(0, x) = ¥(x) for0sxs1,
w(0, x) = §(x) for0sxs1,
v(t,0)=0(t, 1)=w(,0)=w(1,1)=0 fort>0,
for which the numerical results are given in Table 8.
TADLE 8
N & I 4 @
no noise; search on qy, ¢ 4 2011 1.9933
8 1987 2.0226
noise o* = .01; search on ¢y, qs 4 1982 2.1108
'] .1960 2.1246
10 noise; search on ¢, ¢s 4 0500 2.0514
s 0498 19551
noise o = .01; search on q3, @4 4 0522 2.0349
8 0820 1.9385
no noise; soarch on q;, 2, 9 4 2011 0500 19931
] 1988 0499 2.0187
nolee 7 =,08; sesrch on gy, €2, @ 4 1973 0822 21776
] 1949 0821 2.2066
true value 2 08 2
q” A 3 0
. )
: L —— ) has
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7. Concinding remarks. The contributions of the discussions in this paper are
twofold. First, we have developed a general approximation framework in the context
of semigroups that allows treatment of identification and control problems for a wide
class of distributed parameter systems. Our second contribution is a development,
using this framework, of “modal” approximation schemes in the spirit of those often
proposed in the engineering literature. In addition to providing a solid theoretical
foundation for such schemes, we have systematically tested them numerically on a
number of examples and reported some of our findings. One result of these investiga-
tions has been our efforts to develop alternate schemes. The approximation framework
can be used efficiently to develop a class of schemes based on spline or “finite-clement”
ideas. A discussion of our findings in this regard will appear in a manuscript that is
currently in preparation.

We close with several further remarks that we have added in the final version of
this paper, partly in response to referees’ queries and partly as a result of our subsequent
efforts and findings in related investigations. First, ay we noted in Remark 4.1, the
generality of our theoretical framework (g dependent spaces, norms, etc.) is not
essential to treat Exampie 4.1 or, indeed, any of the specific examples discussed above.
However, if one considers a parabolic system as in Example 4.2 for which the function
k is parameter dependent, the q dependence of the appropriate inner product is
essential. In fact, such problems arise naturally in estimation questions for porous
media problems, where one of the parameters to be estimated is the function k (the
field porosity) itself. A treatment using the theoretical framework developed above
in connection with cubic spline approximations is outlined for such problems in [42].

With regard to general spline approximation schemes, we have, since this paper
was first written, completed certain efforts on spline-based techniques (referred to
several times above) in the context of the theoretical framework given above. Second-
order parsbolic and hypesbolic systems {43], as well ag higher-order equations arising
in elasticity (44], have been treated and our findings have been most positive from
both computstional and theoretical viewpoints.
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